St Nicholas C.E Primary School

Calculation Progression Policy
Subtraction

Objective	Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole.	Tens frame, Numicon, cube and other items such as bean bags could be used. 3-1 00 00 \square	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Q シ®O $x \times x \times 1$	$4-3=$ $--1=4-3$
Counting back	Using number lines or number tracks children start with 6 and count back 2 6-2=4	Children to represent what they see pictorially	Children to represent the calculation on a number line or number track and show their iumps. $\begin{array}{llllllllll} 1 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{array}$ \square
Finding the difference.	Using cubes, Numicon or Cuisinaire rods, other objects can also Calculate the difference between 8 and 5 .	Children to draw the cubes/ other concrete objects which they have used or the bar model to illustrate that they need to calculate.OOO!	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Making 10		Children to present the ten frame pictorially and discuss what they did to make 10 .	Children to show how they can make 10 by partitioning the suhtrahend. $14-4=10$ $10-1=9$
Vocabulary		Stem Sentences	
Take away minus less than the difference subtract fewer decrease		The whole is \qquad so \qquad is a part and \qquad is a part (The whole is 10 so 6 is a part and 4 is a part) \qquad is a part and \qquad is a part so \qquad is a whole (7 is a part and 3 is a part so 10 is the whole) The difference between \qquad and \qquad is \qquad (The difference between 12 and 4 is 8).	

ST NICHOLAS C.E. PRIMARY SCHOOL
SUBTRACTION- YEAR TWO

Objective	Concrete	Pictorial	Abstract
2-digit - 1s	Use concrete resources	Represent the resources	Use number fact knowledge, join the ones (smiles), number line $44-3=?$
2-digit - 10s	Place value counters/dienes	Represent resources using lines for tens and circles for ones $\nmid \nmid t \mid \circ_{\circ}$	Answer a question by using partitioning or column subtraction 54 20 - $\begin{aligned} & -\cdots--24-20=? \\ & ? ? \\ & \square \end{aligned}$
Two digit number subtract a two digit number	Use manipulatives To understand exchanging $\rightarrow 1$ ten exchanges for ten ones. (swap shop)	Represent resources by crossing out and exchanging place value	
Vocabulary		Stem Sentences	
Take away minus less than the difference subtract fewer decrease partitioning tens ones place value		The whole is \qquad so \qquad is a part and \qquad is a part (The whole is 10 so 6 is a part and 4 is a part) \qquad is a part and \qquad is a part so \qquad is a whole (7 is a part and 3 is a part so 10 is the whole) The difference between \qquad and \qquad is \qquad (The difference between 12 and 4 is 8).	

Objective	Concrete	Pictorial	Abstract
Column method TO - O	Using dienes	Children to represent the base 10 pictorially.	Column method or children could count back 7.
Column method TO - TO	Using base 10 and having to exchange	Represent the base 10 pictorially, remembering to show	Formal column method. Ch'n know that when they have exchanged the 10 they still have 41 because $\begin{gathered} 41=30+11 \\ 311 \\ 4 x \\ -26 \\ \hline 15 \\ \hline \end{gathered}$
Column method HTO - TO	Using place value counters.	Represent the place value counters pictorially; remembering to show what has been exchanaed.	Formal column method. Children must understand what has happened when they have crossed out digits. $\begin{array}{r} 12 \\ 1214 \\ 284 \\ -\quad 88 \\ \hline 146 \\ \hline \end{array}$
Take away minus less than the difference subtract fewer decrease partitioning tens ones place value column exchange		Stem Sentences	
		The whole is \qquad so \qquad is a part and \qquad is a part (The whole is 10 so 6 is a part and 4 is a part) \qquad is a part and \qquad is a part so \qquad is a whole (7 is a part and 3 is a part so 10 is the whole) The difference between \qquad and \qquad is \qquad (The difference between 12 and 4 is 8)	

ST NICHOLAS C.E. PRIMARY SCHOOL SUBTRACTION- YEAR FIVE

Objective Concrete	Pictorial	Abstract
Column method - decimals (different number up to $3 \mathrm{~d} . \mathrm{p}$) Use place value counters	Children to represent the counters in a place value chart, circling when they make an exchange.	Formal column method. Children must understand what has happened when they have crossed out digits.
Vocabulary	Stem Sentences	
Take away minus less than the difference subtract fewer decrease partitioning tens ones place value column exchange thousands decimal tenths hundredths thousandths	The whole is \qquad so \qquad (The whole is 10 so 6 \qquad is a part and \qquad is (7 is a part and 3 is a The difference between difference betw	is a part and \qquad is a is a part and 4 is a part) a part so \qquad is a whole part so 10 is the whole) \qquad and \qquad is \qquad (The en 12 and 4 is 8)

